万书网 > 文学作品 > 复杂性中的思维物质 > 第32章

第32章



                                    

        实际上,意向性并非大脑所独有。它也是某些复杂系统的特性,可以用生命进化中的吸引子动力学来为其建立模型。社会昆虫的筑巢就是一个集体意向性动力学的例子。这种复杂系统的特性是自催化机制。通过这种机制,建筑巢穴生态系统——白蚁群体与其环境——的目标定向的工作得以进行下去。在复杂系统探究方式中,人们假定,这种社会系统已经说明了诸如大脑和中枢系统那样的较高级发展系统中观察到的规范性质。

        巢穴的构筑过程涉及微观水平上500万只以上昆虫的协调,并导致一定的宏观建筑模式的演化。例如,非洲白蚁构筑的巢穴高度超过15英尺,重量超过10吨。每一白蚁都是独立于其他白蚁进行工作的。但是,它们的行动局部上由某些化学物质的分布所决定,这些化学物质是白蚁自己分泌出来的。建筑材料用化学物质打上了标记。最初,建筑材料是随机分布的,然后以某种不断增加着规则性的方式,直到建筑结构的出现,它是在受到化学物分布支配的昆虫的局部相互作用中出现的。

        此模式决定了几个作为集体活动目标的中心,在数学上这可以解释为扩散场的吸引子。在前面的章节中,吸引子是作为解引入的,它为从不同初始条件出发的多条轨迹所共有。局部的轨迹对于吸引子,或是收敛的或是发散的。在物理或化学场的模型中,吸引子定义了局部区域,其中势能梯度呈现下降趋势,指向零。包围吸引子的区域叫做吸引盆,由向吸引子收敛或发散的梯度流来定义。昆虫的流的模式总体上是由它们的工作空间的吸引子的布局来组织的,这是昆虫动力学的相图。众所周知,吸引子并非总能实现的。如果某些控制参量改变了,一种模式也可能变得不稳定而被破坏,随之又出现新的吸引子模式。

        图4.22a显示了围绕着两个吸引子的化学扩散梯度,它将是两根柱子的基础。因为两根柱子对于白蚁是两个竞争的吸引子,就决定了它们之间有一个鞍点。在后来的建筑步骤中,图4.22a的起初的二维场之后出现了三维场(图4.22b),支配了柱状构造的方向。在图4.22c中,以一个化学扩散梯度的吸引子示意了拱的形成。

        显然,在生态尺度上的意向性并不要求其中单个的系统组件必须意识到其行动的总体后果。意向性仅仅是系统动力学在较长的发展中从总体上展现出来的。图4.22d示意了筑巢的意向性复杂系统的自催化循环。因为它并非有指导的学习过程,那里也就没有诸如“上帝”或“自然”那样的指导性权威的“目标”或“计划”。那不过是一种简化的拟人隐喻,它没有正确地描述所论自组织复杂系统的非线性因果关系。然而,总体上,从复杂的非线性相互作用中出现了意向性的集体行为。

        由于大脑和中枢神经系统都是复杂系统,其非线性的动力学支配着它们的神经元和突触,它们实现了意向性行为模式也就不奇怪了。意向性并非是从天上掉下来的一种奇迹,一种引导着人的精神并将其与自然区别开来的奇迹。它是一种整体模式,是特定的复杂系统在一定条件下形成的。但是,意向性有不同的水平,这取决于增加着的进化复杂性。

        意向并非必定是意识。在图4.21中,我们视觉系统的意向性对象是一块方块,我们并没有施加有意识的意志。所谓的幻觉也是我们的视觉系统一种意向性模式,它自发地产生出来而没有加入我们的有意识的意志。图4.23展示了流形的弯曲效应,它显得是由不同的形象吸引子的排斥于梯度引起的。两条等距平行线显得被左边一对排斥子梯度和被右边的一个排斥子梯度改变了它们的曲率。观察者视觉系统的态空间,由于不同视觉梯度场的结果,表现出不同的曲率,尽管线段在物理图形中仍然保持等距和平行。

        甚至有意识的意向性模式也并非人所独有。一条狗的跳跃不只是为跳跃,而是为了捕食、欢迎主人等等。在有意识的目标定向的意义上,意向性在不同程度上是所有动物的特性。随之而来的问题是,意向性行为如何用复杂系统探究方式来建模,模型又如何在实验中进行检验。

        在这方面,意向性定义为一种有倾向性的行为模式,它可以改变其固有行为模式的动力学性质,例如稳定性。因此,心理学家可以为行为模式的内在动力学建立模型,尽管这样的模式可能被其他有倾向行为的动力学模式所改变。这里我们提醒读者,支配着某些行为模式的内在动力学,是可以用非平衡相变和序参量来建模的。凯尔索、哈肯和其他人已经分析了如下的简单例子:要求人们平行地运动他们的手指(图4.24a),在频率低时他们容易做到这一点。当要求受试人增加其手指的运动频率时,手指会突然地以对称的、反平行的方式运动,失去了有意识的意向性(图4.24b)。

        为了给这种行为模式的相变建立模型,频率被解释为一种控制参量,描述手指运动的宏观变量是相中。该行为可以在与相变化相联系的能量地形中建立模型。该地形必定是对称的,因为左手指和右手指具有同等的功能。相的角度必定是周期的(图4.25)。如果频率增加了,地形及其起始形状较陡的低谷就会变形。最初的缓慢运动中,模式是稳定的,相应于处于x值的稳定相(图4.25a)。最后,处于x值的低谷消失了,起初处于该低谷的小球也向下滚进到最深的最小值,这相应于手指的对称运动(图4.25c)。

        在一些实验中,要求主观上有意向地去实现双手协调的两种模式之间的转变。短暂的过程所相应的转变时间,已经进行了测量。两种模式的稳定性,用序参量的涨落来度量。相对的相动力学用非线性演化方程来进行建模。

        图4.26a示意了按照这个具有两个势能极小值方程的内在动力学。意向性信息对于相对相的动力学的贡献,用图4.26b中的势来表示。把内在的和意向性的动力学加和,得到完整的动力学,结果示意在图4.26c中。在地形中的小球,在O=0时比O=180时沿着陡峭斜坡要滚动得快一些,这相应于经验上测量的转变时间。显然,意向可以通过使得其中一种模式失稳而另一种模式稳定化,从而改变内在动力学。意向性信息在此被看作模式动力学的一部分,吸引着系统向所倾向的模式运动。在此意义上,意向性信息定义了态空间的一个吸引子,此内在动力学模型就建立在此态空间中。

        意向性和语言的意义常常被当作人类思维的根本性特征。意向性状态的例子有疼痛、酥痒、骚痒、信念、害怕、希望、欲望、感觉经验、行动经验、思维、感受等等。它们都使用相应的语句来表达,如“我觉得胃疼”、“我希望得到一辆小汽车”、“我相信上帝”等等。西尔斯提出,精神状态与其他的生物状态如乳汁分泌、光合作用或消化一样地真实。他认识到,精神状态是生物脑的一种宏观态,由微观尺度上的神经元之间的神经生理相互作用引起。因此,它们是不可能由单个神经元的神经生理状态来验证的。

        在大脑的微观态和宏观态之间的区分,是用例如与液体的微观态和宏观态的比拟来加以说明的:液体的宏观态不可能还原为单个分子,或换言之,单个分子不可能是液体。在此意义上,信念、欲望、口渴、视觉经验都是大脑的真实因果特征,如同桌子的固体性或水的液体性一样真实。意向性状态自身可以由大脑的结构引起并由大脑的结构来实现。西尔斯主张,对此并不存在形而上学障碍。

        然而,他特别指出,任何纯粹的模型都不足以充分地模拟意向性,因为形式性质并非意向性的组成部分。他持有这种看法的理由是以“中文小屋’思想实验为基础的。把一个只懂得英文的人锁在一间小屋内,室内贮藏了大量的中文符号,并有一套用英文写下的复杂的翻译规则,籍以对中文符号序列进行操作。他不断地通过一条窄缝接收中文符号序列(图4.27)。他应用那些翻译规则,进一步产生出中文符号序列,并通过窄缝显示出来。

        对于小屋中的那个人来说,并不了解储藏的序列中包含了大量的用中文写下的关于某一主题的信息。通过窄缝输入序列的是关于这些主题的问题或见解。输出的序列的是对于这些收到的输入见解的反应或建议。所用的翻译规则是一种形式程序,模拟了以中文为母语的说话人的通常行为。在中文小屋中的那个人,正确地应用此形式翻译规则,但不理解中文符号序列,这些中文符号序列对于他是无意义的。

        西尔斯认为,形式符号的操作本身并没有任何意向性,因为它们对于使用者来说是完全无意义的。在此情形中,意向性是形式符号如字词、句子等等的特征,它们涉及到“所指”的事物(符号的语义关系)以及使用者(符号的实用关系)。西尔斯断定,这种特征仅仅是大脑的精神状态所固有的。

        他的论证是针对“计算机模拟”的缺陷的,因为他把模拟限定在由程序控制的图林计算机的形式算法。但是我们已表明,大脑具有典型的自组织、自参照复杂系统的特征,这与程序控制的计算机完全不同(参见第6章)。