万书网 > 其他书籍 > 亚里士多德的三段论 > 第43章

第43章





        第三种情况:后件是否定的,并且一个以上的前件是否定的。

        这类表达式能化归为简单表达式,以至最终化归为第二种情况。

        这个情况的解需要斯卢派斯基排斥规则。

        证明:让我们假定原表达式是CNαCNβCγ…

        Np形式的。

        因为任一前件都可以移至无论那一个位置,这个假定总是可以作出的。

        我们把这个表达式相应地省去其第二个或第一个

--  184

        271第五章  判定问题

        前件,化归为两个比较简单一些的表达式CNαCγ…

        Np与CNβCγ…

        Np。

        如果这些表达式有一个以上的否定前件,我们就重复这种处理,一直到我们得出只带有唯一的否定前件的公式为止。

        因为根据第二种情况,这样的公式都是演绎地等值于可判定的肯定的各表达式的,所以它们总是或者被断定或者被排斥。

        只要它们之中的一个被断定了,那末原表达式也必须被断定,因为用简化定律我们可以把先前加以省略的所有其它否定前件加于这个断定的公式之上。

        然而如果所有具有一个否定前件的公式都被排斥了,那么我们重复运用斯卢派斯基排斥规则,从它们得出原表达式必须被排斥。

        举两个例子就可以透彻地说明问题。

        第一个例子:CNAabCNAbcCNIbdCIbcNAcd是一个断定命题。

        我们把这个表达式化归为(1)与(2)

        (1)CNAabCNIbdCIbcNAcd,(2)CNAbcCNIbdCIbcNAcd。

        用同样方式,我们把(1)化归为(3)和(4)

        :(3)CNAabCIbcNAcd,(4)CNIbdCIbcNAcd。

        并且把(2)化归为(5)和(6)

        :(5)CNAbcCIbcNAcd,(6)CNIbdCIbcNAcd。

        现在最后一个表达式是一个断定命题;它是第三格的Ferison式。

        在CpCqp中,以(6)代p,并以NAbc代q,我们得到(2)

        ,再一次应用CpCqp,以(2)代p,并以NAab代q,我们就达到了原命题。

        第二个例子:CNAabCNAbcCNIcdCIbdC

--  185

        3。三段论系统的初等表达式A                                                                                                                                                  371

        NAad,并非一个断定命题。

        如同前面的例子一样,我们把这个表达式化归为:(1)CNAabCNIcdCIbdNAad,(2)CNAbcCNIcdCIbdNAad;然后,我们把(1)化归为(3)和(4)

        ,并且把(2)化归为(5)和(6)

        :(3)CNAabCIbdNAad,(4)CNIcdCIbdNAad,(5)CNAbcCIbdNAad,(6)CNIcdCIbdNAad。

        所有以上带有一个否定前件的公式,都不是断定命题,这可以用把它们化归为只有肯定元素的情况的办法来加以证明。

        表达式(3)

        ,(4)

        ,(5)和(6)都是被排斥的。

        应用斯卢派斯基规则,我们从被排斥的表达式(5)和(6)得到(2)必须被排斥,并且从被排斥的表达式(3)和(4)

        ,得到(1)必须被排斥。

        但是,如果(1)和(2)都被排斥了,那么,原表达式也必须被排斥。

        第四种情况:后件是肯定的,而有些(或所有)前件都是否定的。

        这个情况可以化归为第三种情况。

        证明:CαCNβγ形式的表达式,在断定命题CpCNqrCpCNqCNrNAaa与CCpCNqCNrNAaCpCNqr的基础上都演绎地等值于CαCNβCNγNAaa形式的表达式,因为NAaa总是假的。

        带有否定元素的所有情况就这样地穷尽地考察过了。

        第五种情况:所有前件都是肯定的,而后件是一个全称

--  186

        471第五章  判定问题

        肯定命题。

        有几种从属情况应当加以区分:(a)

        后件是Aa;这个表达式是断定的,因为它的后件是真的。

        (b)

        后件是Aab,而且Aab也是前件之一。

        这个表达式当然是被断定的。

        以下都假定Aab不作为前件出现。

        (c)后件是Aab,但是没有前件是Aaf型的(f不同于a,并且,当然也不同于b)。

        这样的表达式都是被排斥的。

        证明:将不同于a与b的所有变项等同于b,我们只能得到以下的前件:

        Aa,Aba,Ab,Ia,Iab,Iba,Ibb。

        (我们不能得到Aab,因为没有前件是Aaf型的,其中f不同于a。)前提Aa,Ab,Ia,Ibb可因其是真的而略去。

        (如果没有其它前提,这个表达式就被排斥,犹如在第一种情况中一样。)如果除了Iab之外还有Iba,它们之一可以省略掉,因为它们彼此是等值的。

        如果有Aba,则Iab与Iba两者都可以略去,因为Aba蕴涵着它们二者。

        在这些化归之后,只有Aba或Iab能够作为前件留下来。

        现在可以表明这两个蕴涵式,CAbaAab与CIabAab,根据我们的排斥公理都是被排斥的:

        X。

        pAcb,qAba,rIac,SAab×C27—108]108。

        CAabAbaCKAcbAabIac(X。

        CKpqrCsqCKpsr;

        108×CP109—P5927。

        CKAcbAbaIac)

--  187

        3。三段论系统的初等表达式A                                                                                                                                                                571

        P109。

        CAabAbaP109×P110。

        baab]  P10

        CAbaAab。

        如果CAbaAab被排斥,则CIabAab必定也被排斥,因为Iab是比Aba更弱的前提。

        (d)后件是Aab并且有Aaf型的前件(其中f不同于a)。

        如果有一个由a导至b的系列,根据公理3(Barbara式)

        这个表达式被断定;如果没有这样的系列,这个表达式就被排斥。

        证明:我把一个由a导至b的系列了解为一个有序的全称肯定前提的序列:

        Aac1,Ac1c2…,Acn1cn,Acnb,C序列的第一项有a作为它的第一个变元。

        最后一项有b作为它的第二个变元。

        而每一个其它项的第二个变元都与它的后承者的第一个变元相同。

        很明显,从这样一个表达式的序列,重复应用Barbara式就得出Aab。

        所以,如果有一个从a导至b的系列,这表达式就被断定;如果没有这样的系列,我们能消去Aaf型的前提(将它们的第二个变元等同于a)

        ,用这种方法这表达式被化归为从属情况(c)

        ,而它已是被排斥的。

        第六种情况:所有前件都是肯定的,而后件是一个特称肯定命题。

        这里我们也必须区分几种从属情况。

        (a)后件是Ia;这表达式是被断定的,因为它的后件是真的。

        (b)后件是Iab,而出现为前件的或是Aab,或Aba,或Iab,或Iba;很显然,在所有这些情况,这表达式必须被断定。

        以下都假定以上四者都不作为前件出现。

--  188

        671第五章  判定问题

        (c)

        后件是Iab,而没有前件是Afa型的(f不同于a)

        ,或者是Agb型的(g不同于b)这表达式是被排斥的。

        证明:我们把所有不同于a,b的变项都等同于c;于是在Acc或Icc型的真前提之外,我们只得到以下前件:

        Aac,Abc,Iac,Ibc。