万书网 > 文学作品 > 晓肚知肠:肠菌的小心思 > 参考文献

参考文献

    [1] Schloss P D, Girard R A, Thomas M, et al. Status of the archaeal and bacterial census: An update [J]. Mbio, 2016, 7(3): e00201-16.

    [2] Amann R, Rossellómóra R. After all, only millions?[J]. Mbio,2016,7(4): e00999-16.

    [3] Soler J J, Martín-Vivaldi M, Peralta-Sánchez J M, et al. Hoopoes color their eggs with antimicrobial uropygial secretions[J]. Die Naturwissenschaften, 2014, 101(9):697-705.

    [4] Martínvivaldi M, Soler J J, Peraltasánchez J M, et al. Special structures of hoopoe eggshells enhance the adhesion of syMbiont-carrying uropygial secretion that increase hatching success[J]. Journal of Animal Ecology, 2015, 83(6):1289-1301.

    [5] Soler J J, Martínvivaldi M, Ruizrodríguez M, et al. SyMbiotic association between hoopoes and antibiotic-producing bacteria that live in their uropygial gland[J]. Functional Ecology, 2008, 22(5):864-871.

    [6] Soler J J, Martínez‐García á, Rodríguez‐Ruano S M, et al. Nestedness of hoopoes’bacterial communities: SyMbionts from the uropygial gland to the eggshell[J]. Biological Journal of the Linnean Society, 2016, 118(4):763-773.

    [7] Ruizrodríguez M, Valdivia E, Soler J J, et al. SyMbiotic bacteria living in the hoopoe’s uropygial gland prevent feather degradation[J]. Journal of Experimental Biology, 2009, 212(Pt 22):3621.

    [8] Younes J A, Lievens E, Hummelen R, et al. Women and their microbes: The unexpected friendship[J]. Trends in Microbiology, 2018,26(1):16-32.

    [9] Collado M C, Rautava S, Aakko J, et al. Human gut colonisation may be initiated in utero by distinct microbial communities in the placenta and amniotic fluid[J]. Scientific Reports, 2016, 6: 23129.

    [10] Stinson L F, Payne M S, Keelan J A. Planting the seed: Origins, composition, and postnatal health significance of the fetal gastrointestinal microbiota[J]. Critical Reviews inMicrobiology, 2016, 43(3):1-18.

    [11] Hornef M, Penders J. Does a prenatal bacterial microbiota exist [J]. Mucosal Immunology, 2017,10(3):598-601.

    [12] Rosenblum R.Oral hygiene can reduce the incidence of and death resulting from pneumonia and respiratory tract infection[J]. The Journal of the American Dental Association, 2010, 141(9): 1117-1118.

    [13] Teng F, Yang F, Huang S, et al. Prediction of early childhood caries via spatial-temporal variations of oral microbiota[J]. Cell Host & Microbe, 2015, 18(3):296-306.

    [14] Saito M, Shimazaki Y, Nonoyama T, et al. Association between dental visits for periodontal treatment and type 2 diabetes mellitus in an elderly Japanese cohort[J]. Journal of Clinical Periodontology, 2017,44(11):1133-1139.

    [15] Eriksson L, Holgerson P L, Johansson I. Saliva and tooth biofilm bacterial microbiota in adolescents in a low caries community[J]. Scientific Reports, 2017, 7(1):5861.

    [16] Xiao E, Mattos M, Gha V, et al. Diabetes enhances IL-17 expression and alters the oral microbiome to increase its pathogenicity [J]. Cell Host & Microbe, 2017, 22(1):120-128.

    [17] Stone V N, Xu P. Targeted antimicrobial therapy in the microbiome era[J]. Molecular Oral Microbiology,2017,32:446-454.

    [18] Pereira P A, Aho V T, Paulin L, et al. Oral and nasal microbiota in Parkinson’s disease [J]. Parkinsonism & Related Disorders,2017,38:61-67.

    [19] Yu G, Phillips S, Gail M H, et al. The effect of cigarette smoking on the oral and nasal microbiota[J]. Microbiome,2017, 5(1):3.

    [20] Chhibber-Goel J, Singhal V, Bhowmik D, et al. Linkages between oral commensal bacteria and atherosclerotic plaques in coronary artery disease patients[J]. Npj Biofilms Microbiomes, 2016, 2(1):7.

    [21] Kilian M, Chapple I L C, Hannig M, et al. The oral microbiome–an update for oral healthcare professionals[J]. British Dental Journal,2016, 221(10): 657.

    [22] Kato I, Vasquez A, Moyerbrailean G, et al. Nutritional correlates of human oral microbiome[J]. Journal of the American College of Nutrition, 2017, 36(2):88-98.

    [23] Bryan N S, Tribble G, Angelov N. Oral microbiome and nitric oxide: The missing link in the management of blood pressure[J]. Current Hypertension Reports, 2017, 19(4):33.

    [24] Gomez A, Espinoza J L, Harkins D M, et al. Host genetic control of the oral microbiome inhealth and disease[J]. Cell Host & Microbe,2017, 22(3):269-278.

    [25] Xu H, Dongari-Bagtzoglou A. Shaping the oral mycobiota: Interactions of opportunistic fungi with oral bacteria and the host[J]. Current Opinion in Microbiology, 2015, 26:65-70.

    [26] Patricia I D, Linda D S, Anna D. Fungal-bacterial interactions and their relevance to oral health: Linking the clinic and the bench [J]. Frontiers in Cellular and Infection Microbiology, 2014, 4(101): 101.

    [27] 张微云, 叶玮. 口臭的常用诊断方法及其比较[J].口腔材料器械杂志, 2011, 20(4):202-204.

    [28] 张羽, 陈曦, 冯希平.胃肠道疾病与口臭的关系[J].国际口腔医学杂志, 2014, 41(6):703-706.

    [29] 赵晓亚,江振作,王跃飞.真性口臭的病因、分类及与疾病的关系[J].北京口腔医学,2015(3):173-176.

    [30] Penala S, Kalakonda B, Pathakota K R, et al. Efficacy of local use of probiotics as an adjunct to scaling and root planing in chronic periodontitis and halitosis: A randomized controlled trial[J]. Journal of Research in Pharmacy Practice, 2016, 5(2): 86-93.

    [31] Suzuki N,Yoneda M,Tanabe K, et al. Lactobacillus salivarius WB21-containing tablets for the treatment of oral malodor: a double-blind, randomized, placebo-controlled crossover trial[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2014,117(4): 462-470.

    [32] Zarco M F, Vess T J, Ginsburg G S. The oral microbiome in health and disease and the potential impact on personalized dental medicine[J]. Oral Diseases, 2012, 18(2):109-120.

    [33] Lu H, Ren Z, Li A, et al. Deep sequencing reveals microbiota dysbiosis of tongue coat in patients with liver carcinoma [J]. Scientific Reports, 2016, 6:33142.

    [34] Ye J, Cai X, Yang J, et al. Bacillusas a potential diagnostic marker for yellow tongue coating[J]. Scientific Reports, 2016, 6:32496.

    [35] Ren W, Xun Z, Wang Z, et al. Tongue coating and the salivary microbial communities vary in children with halitosis[J]. Scientific Reports, 2016, 6:24481.

    [36] Ma Y, Wu X, Giovanni V, et al. Effects of soybean oligosaccharides on intestinal microbial communities and immune modulation in mice[J]. Saudi Journal of Biological Sciences, 2016, 24(1):114-121.

    [37] Garner C E, Smith S, De L C B, et al. Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease[J]. Faseb Journal, 2007, 21(8):1675-1688.

    [38] Shepherd S F, McGuire N D, de Lacy Costello B P J, et al. The use of a gas chromatograph coupled to a metal oxide sensor for rapid assessment of stool samples from irritable bowel syndrome and inflammatory bowel disease patients[J]. Journal of Breath Research, 2014, 8(2): 026001.

    [39] Ou J Z, Yao C K, Rotbart A, et al. Human intestinal gas measurement systems: In vitro fermentation and gas capsules[J]. Trends in Biotechnology, 2015, 33(4):208-213.

    [40] Figura N, Piomboni P, Ponzetto A, et al. Helicobacter pylori infection and infertility[J]. European Journal of Gastroenterology & Hepatology, 2002, 14(6):663-669.

    [41] Collodel G, Moretti E, Campagna M S, et al. Infection by CagA-positive Helicobacter pylori strains may contribute to alter the sperm quality of men with fertility disorders and increase the systemic levels of TNF-alpha[J]. Digestive Diseases and Sciences, 2010, 55(1):94-100.

    [42] 魏秋,刘彦,金志军,等.幽门螺杆菌感染在女性不孕症发病机制中的作用[J].胃肠病学, 2008, 13(6):361-363.

    [43] Dorer M S, Talarico S, Salama N R. Helicobacter pylori’s unconventional role in health and disease[J]. PLoS pathogens, 2009, 5(10): e1000544.

    [44] Misra V, Pandey R, Misra S P, et al. Helicobacter pylori and gastric cancer: Indian enigma[J]. World Journal of Gastroenterology, 2014,20(6):1503-1509.

    [45] Rogers M B, Brower-Sinning R, Firek B, et al. Acute appendicitis in children is associated with a local expansion of Fusobacteria[J]. Clinical Infectious Diseases, 2016, 63(1):71-78.

    [46] Mirpuri J, Raetz M, Sturge C R, et al. Proteobacteria-specific IgA regulates maturation of the intestinal microbiota[J]. Gut Microbes, 2014, 5(1):28-39.

    [47] Heather F Smith, W Parker, Sanet H Kotzé, et al. Morphological evolution of the mammalian cecum and cecal appendix[J]. Comptes rendus - Palevol, 2016, 16:39-57.

    [48] Damgaard C, Magnussen K, Enevold C, et al. Viable bacteria associated with red blood cells and plasma in freshly drawn blood donations[J]. Plos One, 2015, 10(3):e0120826.

    [49] Bhattacharyya M, Ghosh T, Shankar S, et al. The conserved phylogeny of blood microbiome[J]. Molecular Phylogenetics & Evolution, 2017.

    [50] Moustafa A, Xie C, Kirkness E, et al. The blood DNA virome in 8,000 humans[J]. Plos Pathogens, 2017, 13(3):e1006292.

    [51] Amar J, Lange C, Payros G, et al. Blood microbiota dysbiosis is associated with the onset of cardiovascular events in a large general population: The D.E.S.I.R. study[J]. Plos One, 2013,8(1):e54461.

    [52] Zhao L P, Shen J. Whole-body systems approaches for gut microbiota-targeted, preventive healthcare[J]. Journal of Biotechnology, 2010, 149(3):183.

    [53] 刘冬梅, 李跃梅.菌血症病原菌种类分布及耐药分析[J]. 中国卫生产业, 2017, 14(10):54-55.

    [54] 孙国全, 王倩, 褚云卓,等. 28179例血培养病原菌分布及耐药性分析[J]. 微生物学杂志, 2013, 33(5):102-105.

    [55] Pretorius E, Bester J, Kell D B. A bacterial component to alzheimer’s-type dementia seen via a systems biology approach that links iron dysregulation and inflammagen shedding to disease[J]. Journal of Alzheimers Disease, 2016, 53(4):1237-1256.

    [56] Pa?ssé S, Valle C, Servant F, et al. Comprehensive description of blood microbiome from healthy donors assessed by 16S targeted metagenomic sequencing[J]. Transfusion, 2016, 56(5):1138-1147.

    [57] Pisa D, Alonso R, Rábano A, et al. Different brain regions are infected with fungi in alzheimer’s disease[J]. Scientific Reports, 2015, 5:15015.

    [58] 田在善.有关“腹脑(第二大脑)”之说[J].中国中西医结合外科杂志,2005,11(5):454~457.

    [59] Rolig A S, Mittge E K, Ganz J, et al. The enteric nervous system promotes intestinal health by constraining microbiota composition[J]. PLOS Biology, 2017, 15(2):e2000689.

    [60] Collins S M, Bercik P. The relationship between intestinal microbiota and the central nervous system in normal gastrointestinal function and disease[J]. Gastroenterology, 2009, 136(6):2003-2014.

    [61] Parracho H M R T, Bingham M O, Gibson G R, et al. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children[J]. Journal of medical microbiology,2005,54(10):987-991.

    [62] Goodacre R. Metabolomics of a superorganism[J]. The Journal of nutrition, 2007, 137(1): 259S-266S.

    [63] Chen J, Chia N, Kalari K R, et al. Multiple sclerosis patients have a distinct gut microbiota compared to healthy controls[J]. Scientific Reports, 2016, 6:28484.

    [64] Scheperjans F, Aho V, Pereira P A, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype[J]. Movement Disorders, 2015, 30(3):350-358.

    [65] Zhan X, Stamova B, Jin L W, et al. Gram-negative bacterial molecules associate with Alzheimer disease pathology[J]. Neurology, 2016, 87(22):2324-2332.

    [66] Huo R, Zeng B, Zeng L, et al. Microbiota modulate anxiety-like behavior and endocrine abnormalities in hypothalamic-pituitary-adrenal axis[J]. Frontiers in Cellular & Infection Microbiology, 2017, 7:489.

    [67] Hoban A E, Stilling R M, Moloney G, et al. Microbial regulation of microRNA expression in the amygdala and prefrontal cortex[J]. Microbiome, 2017, 5(1):102.

    [68] Sampson T R, Debelius J W, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson’s disease[J]. Cell, 2016, 167(6):1469-1480.

    [69] Harach T, Marungruang N, Duthilleul N, et al. Reduction of abeta amyloid pathology in APPPS1 transgenic mice in the absence of gut microbiota[J]. Scientific Reports, 2017, 7: 41802.

    [70] Parashar A, Udayabanu M. Gut microbiota: Implications in Parkinson’s disease [J]. Parkinsonism & Related Disorders, 2017, 38:1-7.

    [71] Bercik P. The microbiota-gut-brain axis: Learning from intestinal bacteria?[J]. Gut, 2011, 60(3):288-289.

    [72] Noble E E, Hsu T M, Kanoski S E. Gut to brain dysbiosis: Mechanisms linking western diet consumption, the microbiome, and cognitive impairment[J]. Frontiers in Behavioral Neuroscience, 2017, 11:9.

    [73] De P G, Lynch M D, Lu J, et al. Transplantation of fecal microbiota from patients with irritable bowel syndrome alters gut function and behavior in recipient mice [J]. Science Translational Medicine,2017,9(379):eaaf6397.

    [74] Lionnet A, Leclairvisonneau L, Neunlist M, et al. Does Parkinson’s disease start in the gut? [J]. Acta Neuropathologica, 2018,135(1):1-12.

    [75] Yang X, Qian Y, Xu S, et al. Longitudinal analysis of fecal microbiome and pathologic processes in a rotenone induced mice model of Parkinson’s disease[J]. Frontiers in Aging Neuroscience,2017,9:441.

    [76] Li W, Wu X, Hu X, et al. Structural changes of gut microbiota in Parkinson’s disease and its correlation with clinical features[J]. Science China Life Sciences, 2017, 60(11): 1223-1233.

    [77] Metselaar S, Widdershoven G. Ethical issues in fecal microbiota transplantion: taking into account identity and family relations[J]. American Journal of Bioethics, 2017, 17(5):53-55.

    [78] Chuong K H, Hwang D M, Tullis D E, et al. Navigating social and ethical challenges of biobanking for human microbiome research[J]. BMC Medical Ethics, 2017, 18(1):1.

    [79] Ma Y, Liu J, Rhodes C, et al. Ethical issues in fecal microbiota transplantation in practice[J]. American Journal of Bioethics, 2017, 17(5):34-45.

    [80] Zhang F J, Jiang L L. Neuroinflammation in Alzheimer’s disease[J]. Neuropsychiatric Disease & Treatment, 2015, 11(4):243-256.

    [81] Hu X, Wang T, Jin F. Alzheimer’s disease and gut microbiota[J]. Science China Life Sciences, 2016, 59(10): 1006-1023.

    [82] Booth A, Granger D A, Mazur A, et al. Testosterone and social behavior[J]. Social Forces, 2006, 85(1):167-191.

    [83] Booth A, Johnson D R, Granger D A. Testosterone and men’s depression: The role of social behavior [J]. Journal of Health & Social Behavior, 1999, 40(2):130-140.

    [84] Carter C S, Grippo A J, Pournajafi-Nazarloo H, et al. Oxytocin, vasopressin and sociality[J]. Progress in Brain Research, 2008, 170:331-336.

    [85] Markle J G M, Danska J S. Sex differences in the gut microbiome drive hormone-dependent regulation of autoimmunity[J]. Science, 2013, 339(6123):1084-1088.

    [86] Shropshire J D, Bordenstein S R. Speciation by syMbiosis: The microbiome and behavior[J]. Mbio, 2016, 7(2): e01785-15.

    [87] Flint A J, Gearhardt A N, Corbin W R, et al. Food-addiction scale measurement in 2 cohorts of middle-aged and older women[J]. American Journal of Clinical Nutrition, 2014, 99(3):578.

    [88] Leclercq S, Matamoros S, Cani P D, et al. Intestinal permeability, gut-bacterial dysbiosis, and behavioral markers of alcohol-dependence severity[J]. Proceedings of the National Academy of Sciences, 2014, 111(42): e4485-e4493.

    [89] Mutlu E A, Gillevet P M, Rangwala H, et al. Colonic microbiome is altered in alcoholism[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology, 2012, 302(9): G966-G978.

    [90] Swinburn B A, Sacks G, Hall K D, et al. The global obesity pandemic: Shaped by global drivers and local environments[J]. The Lancet, 2011, 378(9793): 804-814.

    [91] Potenza M N, Grilo C M. How relevant is food craving to obesity and its treatment?[J]. Frontiers in psychiatry, 2014, 5: 164.

    [92] Robertson C, Avenell A, Boachie C, et al. Should weight loss and maintenance programmes be designed differently for men? A systematic review of long-term randomised controlled trials presenting data for men and women: The ROMEO Project[J]. Obesity research & clinical practice, 2016, 10(1): 70-84.

    [93] Field A E, Coakley E H, Must A, et al. Impact of overweight on the risk of developing common chronic diseases during a 10-year period[J]. Archives of Internal Medicine, 2001, 161(13): 1581-1586.

    [94] Berridge K C, Kringelbach M L. Pleasure systems in the brain[J]. Neuron, 2015, 86(3): 646-664.

    [95] Frank S, Laharnar N, Kullmann S, et al. Processing of food pictures: Influence of hunger, gender and calorie content[J]. Brain Research, 2010, 1350: 159-166.

    [96] Dietrich A, Hollmann M, Mathar D, et al. Brain regulation of food craving: Relationships with weight status & eating behavior[J]. Int J Obes, 2016, 40(6).

    [97] Boswell R G, Kober H. Food cue reactivity and craving predict eating and weight gain: a meta-analytic review[J]. Obesity Reviews, 2016, 17(2): 159-177.

    [98] Lennerz B S, Alsop D C, Holsen L M, et al. Effects of dietary glycemic index on brain regions related to reward and craving in men[J]. American Journal of Clinical Nutrition, 2013, 98(3):641.

    [99] Littel M, van den Hout M A, Engelhard I M. Desensitizing addiction: Using eye movements to reduce the intensity of substance-related mental imagery and craving[J]. Frontiers in Psychiatry, 2016, 7: 14.

    [100] Svanb?ck R, Zha Y, Br?nmark C, et al. The interaction between predation risk and food ration on behavior and morphology of Eurasian perch[J]. Ecology & Evolution, 2017, 7(20):8567-8577.

    [101] Mackos A R, Varaljay V A, Maltz R, et al. Role of the intestinal microbiota in host responses to stressor exposure[J]. International Review of Neurobiology, 2016, 131:1.

    [102] Yang C, Qu Y, Fujita Y, et al. Possible role of the gut microbiota–brain axis in the antidepressant effects of ( R )-ketamine in a social defeat stress model[J]. Translational Psychiatry, 2017, 7(12):1294.

    [103] Hayley S, Audet M C, Anisman H. Inflammation and the microbiome: Implications for depressive disorders[J]. Current Opinion in Pharmacology, 2016, 29:42-46.

    [104] Daniels J K, Koopman M, Aidy S E. Depressed gut? The microbiota-diet-inflammation trialogue in depression[J]. Current Opinion in Psychiatry, 2017, 30(5):369.

    [105] Kelly J R, Borre Y, O’ B C, et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat[J]. Journal of Psychiatric Research, 2016, 82:109.

    [106] Lach G, Schellekens H, Dinan T G, et al. Anxiety, depression, and the microbiome: A role for gut peptides[J]. Neurotherapeutics,2017:1-24.

    [107] Bailey M T, Dowd S E, Parry N M A, et al. Stressor exposure disrupts commensal microbial populations in the intestines and leads to increased colonization by citrobacter rodentium[J]. Infection & Immunity, 2010, 78(4):1509.

    [108] Hoban A E, Moloney R D, Golubeva A V, et al. Behavioural and neurochemical consequences of chronic gut microbiota depletion during adulthood in the rat[J]. Neuroscience, 2016, 339:463-477.

    [109] Schnorr S L, Bachner H A. Integrative therapies in anxiety treatment with special emphasis on the gut microbiome[J]. Yale Journal of Biology & Medicine, 2016, 89(3):397-422.

    [110] Jackson M L, Butt H, Ball M, et al. Sleep quality and the treatment of intestinal microbiota imbalance in Chronic Fatigue Syndrome: A pilot study[J]. Sleep Science, 2015, 8(3):124-133.

    [111] Walker A K, Rivera P D, Wang Q, et al. The P7C3 class of neuroprotective compounds exerts antidepressant efficacy in mice by increasing hippocampal neurogenesis[J]. Molecular Psychiatry, 2015, 20(4):500-508.

    [112] Worthington J J, Reimann F, Gribble F M. Enteroendocrine cells-sensory sentinels of the intestinal environment and orchestrators of mucosal immunity[J]. Mucosal Immunology, 2018, 11(1): 3.

    [113] Herpertz-Dahlmann B, Seitz J, Baines J. Food matters: How the microbiome and gutbrain interaction might impact the development and course of anorexia nervosa[J]. European Child & Adolescent Psychiatry, 2017, 26(9):1-11.

    [114] Burrows T, Skinner J, Joyner M A, et al. Food addiction in children: Associations with obesity, parental food addiction and feeding practices[J]Eating Behaviors, 2017, 26:114-120.

    [115] Leit?ogon?alves R, Carvalhosantos Z, Francisco A P, et al. Commensal bacteria andessential amino acids control food choice behavior and reproduction[J]. PLOS Biology, 2017, 15(4):e2000862.

    [116] Wong A C N, Wang Q P, Morimoto J, et al. Gut microbiota modifies olfactory-guided microbial preferences and foraging decisions in Drosophila[J]. Current Biology, 2017, 27(15): 2397-2404.

    [117] Simpson S J, Clissold F J, Lihoreau M, et al. Recent advances in the integrative nutrition of arthropods[J]. Annual Review of Entomology, 2015, 60: 293-311.

    [118] Van d W M, Schellekens H, Dinan T G, et al. Microbiota-Gut-Brain axis: Modulator of host metabolism and appetite[J]. Journal of Nutrition, 2017, 147(5):727.

    [119] Fluitman K S, Wijdeveld M, Nieuwdorp M, et al. Potential of butyrate to influence food intake in mice and men[J]. Gut, 2018, 67(7): 1203-1204.

    [120] Li Z, Yi C X, Katiraei S, et al. Butyrate reduces appetite and activates brown adipose tissue via the gut-brain neural circuit[J]. Gut, 2017: gutjnl-2017-314050.

    [121] Van d W M, Schellekens H, Dinan T G, et al. Microbiota-Gut-Brain Axis: Modulator of host metabolism and appetite[J]. Journal of Nutrition, 2017, 147(5):727.

    [122] Williams E, Chang R, Strochlic D, et al. Sensory neurons that detect stretch and nutrients in the digestive system[J]. Cell, 2016, 166(1):209-221.

    [123] Martel J, Ojcius D M, Chang C J, et al. Anti-obesogenic and antidiabetic effects of plants and mushrooms[J]. Nature Reviews Endocrinology, 2017, 13(3):149.

    [124] Norton M, Murphy K G. Targeting gastrointestinal nutrient sensing mechanisms to treat obesity[J]. Current Opinion in Pharmacology, 2017, 37:16-23.

    [125] Oliveira D, Nilsson A. Effects of dark-chocolate on appetite variables and glucose tolerance: A 4 week randomised crossover intervention in healthy middle aged subjects[J]. Journal of Functional Foods, 2017, 37(C):390-399.

    [126] Huang J, Lin X, Xue B, et al. Impact of polyphenols combined with high-fat diet on rats’gut microbiota[J]. Journal of Functional Foods, 2016, 26:763-771.

    [127] Borre, Yuliya E, O’Keeffe, et al. Microbiota and neurodevelopmental windows: implications for brain disorders[J]. Trends in Molecular Medicine, 2014, 20(9):509-518.

    [128] Yang Y, Tian J, Yang B. Targeting gut microbiome: A novel and potential therapy for autism[J]. Life Sciences, 2018, 194:111-119.

    [129] Fox M, Knapp L A, Andrews P W, et al. Hygiene and the world distribution of Alzheimer’sdisease Epidemiological evidence for a relationship between microbial environment and age-adjusted disease burden[J]. Evolution, medicine, and public health, 2013(1): 173-186.

    [130] Hill J M, Bhattacharjee S, Pogue A I, et al. The gastrointestinal tract microbiome and potential link to Alzheimer’s disease[J]. Frontiers in Neurology, 2014, 5:43.

    [131] Weiss S T. Eat dirt--the hygiene hypothesis and allergic diseases[J]. New England Journal of Medicine, 2002, 347(12):930.

    [132] Jiang C, Li G, Huang P, et al. The gut microbiota and Alzheimer’s disease[J]. Journal of Alzheimers Disease Jad, 2017, 58(1):1.

    [133] Zhao Y, Cong L, Jaber V, et al. Microbiome-Derived lipopolysaccharide enriched in the perinuclear region of Alzheimer’s disease brain[J]. Frontiers in Immunology, 2017, 8:1064. [134] Shi Y, Yamada K, Liddelow S A, et al. ApoE4 markedly exacerbates tau-mediated neurodegeneration in a mouse model of tauopathy[J]. Nature, 2017, 549(7673):523-527.

    [135] Vogt N M, Kerby R L, Dillmcfarland K A, et al. Gut microbiome alterations in Alzheimer’s disease[J]. Scientific Reports, 2017, 7(1):p563.

    [136] Pistollato F, Sumalla C S, Elio I, et al. Role of gut microbiota and nutrients in amyloid formation and pathogenesis of Alzheimer disease[J]. Nutrition Reviews, 2016, 74(10):624. [137] Mancuso C, Santangelo R. Alzheimer’s disease and gut microbiota modifications: The long way between preclinical studies and clinical evidence[J]. Pharmacological Research, 2017. [138] Hoffman J D, Parikh I, Green S J, et al. Age drives distortion of brain metabolic, vascular and cognitive functions, and the gut microbiome[J]. Frontiers in Aging Neuroscience, 2017, 9:298.

    [139] Garcíape?a C, álvarezcisneros T, Quirozbaez R, et al. Microbiota and aging. a review and commentary[J]. Archives of Medical Research, 2017.

    [140] Alkasir R, Li J, Li X, et al. Human gut microbiota: the links with dementia development[J]. Protein & Cell, 2017, 8(2):90.

    [141] Bu X L, Xiang Y, Jin W S, et al. Blood-derived amyloid-β protein induces Alzheimer’s disease pathologies[J]. Molecular Psychiatry, 2017.

    [142] 罗佳, 金锋.肠道菌群影响宿主行为的研究进展[J].科学通报, 2014, 59(22):2169-2190.

    [143] Nakamura A, Kaneko N, Villemagne V L, et al. High performance plasma amyloid-β biomarkers for Alzheimer’s disease[J]. Nature, 2018, 554(7691): 249.

    [144] Chandra R, Hiniker A, Kuo Y M, et al. α-Synuclein in gut endocrine cells and itsimplications for Parkinson’s disease[J]. Jci Insight, 2017, 2(12).

    [145] Liu B, Fang F, Pedersen N L, et al. Vagotomy and Parkinson disease[J]. Neurology, 2017, 88(21):1996-2002.

    [146] Nair A T, Ramachandran V, Joghee N M, et al. Gut microbiota dysfunction as reliable non(-?)invasive early diagnostic biomarkers in the pathophysiology of Parkinson’s Disease: A Critical Review[J]. Journal of Neurogastroenterology & Motility, 2018, 24(1):30-42.

    [147] Hill-Burns E M, Debelius J W, Morton J T, et al. Parkinson’s disease and Parkinson’s disease medications have distinct signatures of the gut microbiome[J]. Movement Disorders, 2017, 32(5):739.

    [148] Garaycoechea J I, Crossan G P, Langevin F, et al. Alcohol and endogenous aldehydes damage chromosomes and mutate stem cells[J]. Nature, 2018, 553(7687):171.

    [149] Yu C, Tang H, Guo Y, et al. Effect of hot tea consumption and its interactions with alcohol and tobacco use on the risk for esophageal cancer: A population-based cohort study[J]. Annals of Internal Medicine, 2018.

    [150] Topiwala A, Allan C L, Valkanova V, et al. Moderate alcohol consumption as risk factor for adverse brain outcomes and cognitive decline: longitudinal cohort study[J]. BMJ (Clinical research ed.), 2017, 357:j2353.

    [151] 屈兴汉, 耿宝文, 贾军.血尿酸水平及饮酒与帕金森病的相关性研究[J]. 临床医学研究与实践, 2017, 2(2):4-5.